A chord diagram is a graphical representation of the data in a matrix’s interrelationships. The data is arranged in a radial pattern around a circle, with the relationships between the data points commonly depicted as arcs linking the dots (Wikipedia). Each entity is represented by a fragment on the outer part of the circular layout. Then, arcs are drawn between each entities. The size of the arc is proportional to the importance of the flow.
Data is the most important asset. It validates a research story and a conclusions; it provides a platform of confidence for other researchers who might continue your work; and it is a resource that can be used by researchers in other fields to undertake new work, perhaps completely unrelated to your own research interests. Well-organised data that is accessible to the research community can continue to provide extended benefit and value long after your projects have been completed.
In the previous post I illustrated a simple way to do Principal Component Analysis in R. I simply used the output results from prcomp() function of R base. But, I constantly find hard to the untidy output that prcomp generates and wished to get a tidy result. In this post I will illustrate the approaches that I was inspired by Claus Wilke in the post PCA tidyverse style.
Principal Component Analysis (PCA) Principal Component Analysis (PCA) is widely used to explore data. This technique allows you visualize and understand how variables in the dataset varies. Therefore, PCA is particularly helpful where the dataset contain many variables.This is a method of unsupervised learning that allows you to better understand the variability in the data set and how different variables are related.
The Components in PCA are the underlying structure in the data.
What is Raster Data? Raster or “gridded” data are data that are stored in pixels. In the spatial world, each pixel represents an area on the Earth’s surface. In this post will focus raster package and its key function for importing and manipulating raster objects. I expect that toward the end of the post, you will have a glimpse of this package and you will be able to: